If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x+x^2=54
We move all terms to the left:
24x+x^2-(54)=0
a = 1; b = 24; c = -54;
Δ = b2-4ac
Δ = 242-4·1·(-54)
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{22}}{2*1}=\frac{-24-6\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{22}}{2*1}=\frac{-24+6\sqrt{22}}{2} $
| y=3.7+1.5 | | 2x-4+3x-7+2x+3+17-x=180 | | 14x^2-4x=-2 | | s=-12s+13 | | -4(-2+x)=8 | | 3/5x+2=2/3x–4 | | 9c+9+2c=12c+2 | | 10y-8=-12y+32 | | (12x=114) | | –1−5t=–5t−1 | | 21x+4x+5=60 | | 5-7k=-4k-7k | | 7x+28+6=21 | | 10x-12x=50 | | 10.9q+16.36-18.46=-q-8.05 | | 2(n+5)=-2 | | f=6f−10 | | 5x+3=-6x+113 | | 7f+11=–38 | | 6(x+5)=3(x-8)+3x | | -19-20m=-4m-18m+13 | | -4-7x=-x-64 | | -4x+5+3x=2-x | | y=3(0.5)+2 | | -92=-7(1x+6)+6 | | -19+2p+11p=13+11p | | 0.25(x13)=7 | | 3(t-2)=2(2t-10) | | 7w+10=6+7w | | 25x+29=51 | | 2-3x=-x-8x= | | -3-12j-7=-14j+18 |